高等数学靠前定理公式

来源:互联网 时间:2024-12-25 07:31:57 人看过

零点定理、最值定理、介值定理、费马定理、罗尔定理、拉格朗日中值定理、柯西中值定理、积分中值定理。

举例介绍:

1、零点定理

设函数f(x)在闭区间[a,b]上连续,且f(a)与f(b)异号(即f(a)×f(b)<0),那么在开区间(a,b)内至少有函数f(x)的一个零点,即至少有一点ξ(a<ξ<b)使f(ξ)=0。(至少存在一个点,其值是0)

2、最值定理

若函数f在闭区间[a,b]上连续,则f在[a,b]上有最大值与最小值。

3、介值定理

因为f(x)在[a,b]上连续,所以在[a,b]上存在最大值M,最小值N;即对于一切x∈[a,b],有N<=f(x)<=M。

因此有N<=f(x1)<=M;N<=f(x2)<=M;...N<=f(xn)<=M;上式相加,得nN<=f(x1)+f(x2)+...+f(xn)<=nM。

于是N<=[f(x1)+f(x2)+...+f(xn)]/n<=M,所以在(x1,xn)内至少存在一点c,使得f(c)=[f(x1)+f(x2)+...+f(xn)]/n。

4、费马定理

函数f(x)在点ξ的某邻域U(ξ)内有定义,并且在ξ处可导,如果对于任意的x∈U(ξ),都有f(x)≤f(ξ)(或f(x)≥f(ξ)),那么f'(ξ)=0。

5、罗尔定理

如果函数f(x)满足以下条件:

(1)在闭区间[a,b]上连续;

(2)在(a,b)内可导;

(3)f(a)=f(b);

则至少存在一个ξ∈(a,b),使得f'(ξ)=0。

6、拉格朗日中值定理

如果函数f(x)在(a,b)上可导,[a,b]上连续,则必有一ξ∈(a,b),使得f'(ξ)*(b-a)=f(b)-f(a),f(x)在(a,b)上可导,[a,b]上连续是拉格朗日中值定理成立的充分条件。

7、柯西中值定理

如果函数f(x)及F(x)满足:

(1)在闭区间【a,b】上连续;

(2)在开区间(a,b)内可导;

(3)对任一x∈(a,b),F'(x)≠0,

那么在(a,b)内至少有一点ζ,使等式【f(b)-f(a)】/【F(b)-F(a)】=f'(ζ)/F'(ζ)成立。

8、积分中值定理

若函数f(x)在闭区间[a,b]上连续,,则在积分区间[a,b]上至少存在一个点ξ,使下式成立

∫下限a上限bf(x)dx=f(ξ)(b-a)(a≤ξ≤b)。

免责声明:本站内容仅用于学习参考,信息和图片素材来源于互联网,如内容侵权与违规,请联系我们进行删除,我们将在三个工作日内处理。联系邮箱:chuangshanghai#qq.com(把#换成@)

本文标签

高等数学公式定理大全

免责声明:本站内容仅用于学习参考,信息和图片素材来源于互联网,如内容侵权与违规,请联系我们进行删除,我们将在三个工作日内处理。

联系邮箱:chuangshanghai#qq.com(把#换成@)

Copyright © 转乾企业管理-百问网 版权所有

黔ICP备2023009682号